Soal dan Pembahasan - Ujian Akhir Semester Fungsi Kompleks A 2020 - Prodi Pendidikan Matematika FKIP ULM
Quote ini nanti isinya quote. Soal Nomor 1 Buktikan $u(x,y)$ harmonik dalam domain definisinya, dan tentukan fungsi $f(z)=u(x,y)+iv(x,y)$ jika $u(x,y)=\displaystyle \frac{x}{x^2+y^2}$. Pembahasan $u(x,y)=\displaystyle \frac{x}{x^2+y^2}$ $\begin{aligned} u_x&=\frac{(x^2+y^2)-x(2x)}{(x^2+y^2)^2} \\ &=\frac{y^2-x^2}{(x^2+y^2)^2} \end{aligned}$ $\begin{aligned} u_{xx}&=\frac{(-2x)(x^2+y^2)^2-(y^2-x^2)2(x^2+y^2)2x}{(x^2+y^2)^4} \\ &=\frac{(-2x)(x^4+2x^2y^2+y^4)-4x(y^4-x^4)}{(x^2+y^2)^4} \\ &=\frac{2x^5-4x^3y^2-6xy^4}{(x^2+y^2)^4} \end{aligned}$ $\begin{aligned} u_y&=\frac{-2xy}{(x^2+y^2)^2} \end{aligned}$ $\begin{aligned} u_{yy}&=\frac{(-2x)(x^2+y^2)^2-(-2xy)2(x^2+y^2)2y}{(x^2+y^2)^4} \\ &=\frac{(-2x)(x^4+2x^2y^2+y^4)+8xy^2(x^2+y^2)}{(x^2+y^2)^4} \\ &=\frac{-2x^5+4x^3y^2+6xy^4}{(x^2+y^2)^4} \end{aligned}$ Perhatikan bahwa $u_{xx}+u_{yy}=\displaystyle ...