Soal dan Pembahasan - Ujian Tengah Semester Kalkulus Lanjut - Prodi Pendidikan Matematika FKIP ULM (Bagian 2)
Quote
Soal Nomor 1
Buktikan bahwa $\frac{\partial^2f}{\partial x^2}+\frac{\partial^2f}{\partial y^2}=0$ jika $f(x,y)=\ln \left(4x^2+4y^2\right)$
Dengan menggunakan Aturan Rantai didapatkan $\begin{aligned}
\frac{\partial f}{\partial x}\left(\ln \left(4x^2+4y^2\right)\right)&=\frac{\partial \left(\ln \left(4x^2+4y^2\right)\right)}{\partial (4x^2+4y^2)}\cdot \frac{\partial (4x^2+4y^2)}{\partial x} \\
&=\frac1{4x^2+4y^2}\cdot 8x \\
&=\frac{2x}{x^2+y^2}
\end{aligned}$ $\begin{aligned}
\frac{\partial}{\partial x}\left(\frac{u}{v}\right)&=\frac{v\frac{\partial u}{\partial x}-u\frac{\partial v}{\partial x}}{v^2} && \\
&=\frac{\left(x^2+y^2\right)\left(\frac{\partial}{\partial x} (2x)\right)-2x\left(\frac{\partial}{\partial x}\left(x^2+y^2\right)\right)}{\left(x^2+y^2\right)^2} \\
&=\frac{2x^2+2y^2-2x\left(2x\right)}{\left(x^2+y^2\right)^2} \\
&=\frac{-2x^2+2y^2}{\left(x^2+y^2\right)^2} \\
\frac{\partial^2f}{\partial x^2}&=\frac{-2x^2+2y^2}{\left(x^2+y^2\right)^2}
\end{aligned}$ $\begin{aligned}
\frac{\partial f}{\partial y}\left(\ln \left(4x^2+4y^2\right)\right)&=\frac{\partial \left(\ln \left(4x^2+4y^2\right)\right)}{\partial (4x^2+4y^2)}\cdot \frac{\partial (4x^2+4y^2)}{\partial y} \\
&=\frac1{4x^2+4y^2}\cdot 8y \\
&=\frac{2y}{x^2+y^2}
\end{aligned}$ $\begin{aligned}
\frac{\partial}{\partial y}\left(\frac{u}{v}\right)&=\frac{v\frac{\partial u}{\partial y}-u\frac{\partial v}{\partial y}}{v^2} \\
&=\frac{\left(x^2+y^2\right)\left(\frac{\partial}{\partial y} (2y)\right)-2y\left(\frac{\partial}{\partial y}\left(x^2+y^2\right)\right)}{\left(x^2+y^2\right)^2} \\
&=\frac{2x^2+2y^2-2y\left(2y\right)}{\left(x^2+y^2\right)^2} \\
&=\frac{2x^2-2y^2}{\left(x^2+y^2\right)^2} \\
\frac{\partial^2f}{\partial y^2}&=\frac{2x^2-2y^2}{\left(x^2+y^2\right)^2}
\end{aligned}$ $$\frac{\partial^2f}{\partial x^2}+\frac{\partial^2f}{\partial y^2}=\frac{-2x^2+2y^2}{\left(x^2+y^2\right)^2}+\frac{2x^2-2y^2}{\left(x^2+y^2\right)^2}=0$$
Terbukti $\blacksquare$
Soal Nomor 2
Tunjukkan bahwa vektor satuan pada arah di mana $f(x,y,z)=x^2yz$ meningkat paling cepat di $\textbf{p}=(1,-1,2)$ adalah $\displaystyle \bigg\langle \frac{-4}{\sqrt{21}},\frac{2}{\sqrt{21}},\frac{-1}{\sqrt{21}} \bigg\rangle$
$f(x,y,z)=x^2yz$ didapatkan $f_x(x,y,z)=2xyz$, $f_y(x,y,z)=x^2z$ dan $f_z(x,y,z)=x^2y$. Sehingga
$\begin{aligned}
\nabla f(x,y,z)&=\big\langle 2xyz,x^2z,x^2y\big\rangle \\
\nabla f(1,-1,2)&=\langle -4,2,-1\rangle
\end{aligned}$ $\begin{aligned}
\left\|\nabla f\right\|&=\sqrt{\left(-4\right)^2+2^2+\left(-1\right)^2} \\
&=\sqrt{16+4+1} \\
&=\sqrt{21}
\end{aligned}$
Terbukti $\blacksquare$
Soal Nomor 3
Buktikan bahwa $x+3y+\sqrt{7}z=-1$ adalah persamaan bidang singgung permukaan $x^2-y^2+z^2+1=0$ pada titik $\left(1,3,\sqrt{7}\right)$
Dari soal didapatkan $f_x(x,y,z)=2x$, $f_y(x,y,z)=-2y$ dan $f_z(x,y,z)=2z$. Sehingga $\nabla f(1,3,\sqrt{7})=\big\langle 2,-6,2\sqrt{7}\big\rangle$. Berdasarkan Teorema A persamaan bidang singgung di titik $(1,3,\sqrt{7})$ adalah
$\begin{aligned}
2(x-1)-6(y-3)+2\sqrt{7}(z-\sqrt{7})&=0 && \\
2x-2-6y+18+2\sqrt{7}z-14&=0 && \\
2x-6y+2\sqrt{7}z&=-2 && \\
x-3y+\sqrt{7}z&=-1
\end{aligned}$
Soal Nomor 4
Buktikan bahwa nilai maksimum dari $f(x,y)=xy$ dengan kendala $4x^2+9y^2-36=0$ adalah $3$.
Pertama kita tulis kendalanya sebagai $g(x,y)=4x^2+9y^2-36=0$. Sehingga didapatkan $$\nabla f(x,y)=\langle y,x\rangle $$ dan $$\nabla g(x,y)=\langle 8x,18y\rangle $$ Persamaan Lagrangenya adalah
$\begin{align}
y&=\lambda 8x \ \ \ \ \ \ \ \ \ (1) \\
x&=\lambda 18y \ \ \ \ \ \ \ (2) \\
4x^2+9y^2&=36 \ \ \ \ \ \ \ \ \ \ \ (3)
\end{align}$ $\begin{aligned}
y&=\lambda 8(\lambda18y) \nonumber\\
y&=144\lambda^2y \nonumber\\
\lambda&=\pm \frac{1}{12}
\end{aligned}$ $\begin{aligned}
y&=\frac{2}{3}x
\end{aligned}$ \begin{aligned}
4x^2+9y^2&=36 \\
4x^2+9(\frac{2}{3}x)^2&=36 \\
4x^2+4x^2&=36\\
x^2&=\frac{9}{2} \\
x&=\pm \frac{3}{\sqrt{2}}
\end{aligned}
Terbukti. $\blacksquare$
Soal Nomor 5
Buktikan bahwa volume tetrahedron yang dibatasi oleh bidang-bidang koordinat dan bidang $3x+4y+z-12=0$ adalah $24$
Volume dari tetrahedron tersebut adalah
$\begin{aligned}
V&=\int_{0}^{4}\int_{0}^{-\frac{3x}{4}+3}(12-3x-4y)\ dydx\\
&=\int_{0}^{4} \frac{9}{8}(x-4)^2 dx \\
&=24
\end{aligned}$
Terbukti. $\blacksquare$
Comments
Post a Comment