Soal dan Pembahasan - Ujian Tengah Semester Fungsi Kompleks A - Prodi Pendidikan Matematika FKIP ULM

Quote by Nicolas Bourbaki

Structures are the weapons of the mathematicians

Soal Nomor 1
Jika $z_1$ dan $z_2$ adalah bilangan kompleks, maka buktikan $|z_1z_2|=|z_1||z_2|$ dan $\displaystyle \left|\frac{z_1}{z_2}\right|=\frac{|z_1|}{|z_2|}$.

Perhatikan bahwa
$z \cdot \overline{z} = (a+bi)(a-bi) = a^2 + b^2 = |z|^2$.
Sehingga berlaku
$\begin{aligned} |z_1 \cdot z_2|^2 &=(z_1 \cdot z_2) \overline{(z_1 \cdot z_2)} \\ &=z_1 \cdot z_2 \cdot \overline{z_1} \cdot \overline{z_2} \\ &=z_1 \cdot \overline{z_1} \cdot z_2 \cdot \overline{z_2} \\ &=|z_1|^2 |z_2|^2 \end{aligned}$
Karena nilai mutlak adalah non-negatif, maka berlaku
$|z_1z_2|=|z_1||z_2|~~~~\blacksquare$

$\begin{aligned} \left|\frac{z_1}{z_2}\right|^2&=\frac{z_1}{z_2} \cdot \overline{\left(\frac{z_1}{z_2}\right)} \\ &=\frac{z_1}{z_2} \cdot \frac{\overline{z_1}}{\overline{z_2}} \\ &=\frac{z_1 \cdot \overline{z_1}}{z_2 \cdot \overline{z_2}} \\ &=\frac{|z_1|^2}{|z_2|^2} \end{aligned}$
Karena nilai mutlak adalah non-negatif, maka berlaku
$\displaystyle \left|\frac{z_1}{z_2}\right|=\frac{|z_1|}{|z_2|}~~~~\blacksquare$

Soal Nomor 2
Tunjukkan bahwa:

  1. $\displaystyle \frac{10}{(1-i)(2-i)(3-i)}=i$
  2. $(1+i\sqrt{3})^6=64$

  1. $\displaystyle \frac{10}{(1-i)(2-i)(3-i)}=\frac{10}{(1-3i)(3-i)}=\frac{10}{-10i} =-\frac{1}{i}=i~~~~~~~~\blacksquare$

  2. Ubah $(1+i\sqrt{3})^6$ ke bentuk polar.

    $\begin{aligned} (1+i\sqrt{3})^6&=\left(\sqrt{1^2 + (\sqrt{3})^2}~\text{cis}~\frac{\pi}{3} \right)^6 \\ &=\left(2~\text{cis}~\frac{\pi}{3} \right)^6 \\ &=2^6~\text{cis}~\left(6\cdot \frac{\pi}{3}\right) \\ &=64~\text{cis}~2\pi \\ &=64~(\cos 2\pi + i \sin 2\pi) \\ &=64~(1 + i(0)) \\ &=64~~~~~~~~\blacksquare \end{aligned}$

Soal Nomor 3
Tentukan:

  1. $\text{Arg}~z$ untuk $\displaystyle z=\frac{-2}{1+i\sqrt{3}}$
  2. Semua nilai akar dari $w=\sqrt[3]{-1}$

  1. $\displaystyle z=\frac{-2}{1+i\sqrt{3}}=\frac{-2}{1+i\sqrt{3}}\cdot\frac{1-i\sqrt{3}}{1-i\sqrt{3}}=-\frac{1}{2}+\frac{1}{2}i\sqrt{3}$

    $\text{Arg}~z=\arctan \frac{\tfrac{1}{2}\sqrt{3}}{-\tfrac{1}{2}}=\arctan -\sqrt{3}=\displaystyle \frac{2}{3}\pi$ (kuadran II)

    Jadi, diperoleh $\boxed{\text{Arg}~z=\frac{2}{3}\pi}$.
  2. $\displaystyle w=(-1)^{\frac{1}{3}}$
    Ubah $w$ ke bentuk polar.
    $\begin{aligned} w&=\left(1~\text{cis}~(\pi+2k\pi)\right)^{\frac{1}{3}} \\ &=1^{\frac{1}{3}}~\text{cis}~(\frac{\pi}{3}+\frac{2}{3}k\pi) \end{aligned}$
    Diperoleh
    $\boxed{\displaystyle w_k=\text{cis}~(\frac{\pi}{3}+\frac{2}{3}k\pi)}, k=0,1,2$

    $\displaystyle w_0=\text{cis}~\frac{\pi}{3}=\frac{1}{2}+i\frac{1}{2}\sqrt{3}$
    $\displaystyle w_1=\text{cis}~(\frac{\pi}{3}+\frac{2}{3}\pi)=\text{cis}~(\pi)=-1$
    $\displaystyle w_2=\text{cis}~(\frac{\pi}{3}+\frac{4}{3}\pi)=\text{cis}~(\frac{5}{3}\pi)=\frac{1}{2}-i\frac{1}{2}\sqrt{3}$

    Jadi, semua nilai akar dari $w=\sqrt[3]{-1}$ ialah
    $\boxed{w_0=\frac{1}{2}+i\frac{1}{2}\sqrt{3}\\w_1=-1\\w_2=\frac{1}{2}-i\frac{1}{2}\sqrt{3}}$

Soal Nomor 4
Konstruksi suatu soal yang menunjukkan bahwa suatu fungsi $\displaystyle \lim_{z~\to~0} f(z)$ tidak ada disertai dengan jawabannya.

Jika $\displaystyle f(z)=\frac{5x^2y^2}{x^4+y^4}-i\frac{2y^4}{x^4}$, buktikan $\displaystyle \lim_{z~\to~0} f(z)$ tidak ada.
Bukti.
$z \to 0 \Rightarrow (x,y) \to 0$
Ambil kurva 1 $(k_1):y=x$ $\begin{aligned} f(z) &= \frac{5x^2(x)^2}{x^4+(x)^4} - i \frac{2(x)^4}{x^4} \\ &= \frac{5x^4}{2x^4} - i \frac{2x^4}{x^4} \\ \end{aligned}$

$\begin{aligned} \lim_{(x,y) \to (0,0)} \left(\frac{5x^4}{2x^4} - i \frac{2x^4}{x^4}\right) &= \lim_{(x,y) \to (0,0)} \left(\frac{5}{2} - 2i\right) \\ &=\frac {5}{2i} \end{aligned}$

Ambil kurva 2 $(k_2):y=x^2$ $\begin{aligned} f(z) &= \frac{5x^2(x^2)^2}{x^4+(x^2)^4} - i \frac{2(x^2)^4}{x^4} \\ &= \frac{5x^6}{x^4+x^8} - i \frac{2x^8}{x^4} \\ &= \frac{5x^2}{1+x^4} - 2ix^4 \end{aligned}$

$\begin{aligned} \lim_{(x,y) \to (0,0)} \frac{5x^2}{1+x^4} - 2ix^4 &= \frac{5(0)^2}{1+(0)^4} - 2i(0)^4 \\ &= 0 \end{aligned}$
Didapat bahwa
$\boxed{\displaystyle \lim_{z_0 \in k_1,~z \to z_0} f(z) \neq \lim_{z_0 \in k_2,~z \to z_0} f(z)}$
Sehingga terbukti bahwa $\displaystyle \lim_{z \to z_0} f(z)$ tidak ada. $\blacksquare$

Comments

Popular posts from this blog

Soal dan Pembahasan - Ujian Akhir Semester Kalkulus Lanjut - Prodi Pendidikan Matematika FKIP ULM

Soal dan Pembahasan - Ujian Tengah Semester Kalkulus II Tahun 2020 - Prodi Pendidikan Matematika FKIP ULM

Soal dan Pembahasan - Ujian Akhir Semester Fungsi Kompleks A 2020 - Prodi Pendidikan Matematika FKIP ULM