Soal dan Pembahasan - Ujian Akhir Semester Kalkulus II Tahun 2020 - Prodi Pendidikan Matematika FKIP ULM
Quote
Soal Nomor 1
Jika $y=x^2\ln x^2 +(\ln x)^2$ maka $\frac{dy}{dx}=2x\left(\ln ex^{2+\frac{1}{x^2}}\right)$
$\begin{aligned}
y&=x^2\ln x^2 +(\ln x)^2 \\
&=x^2\cdot 2\ln x+(\ln x)^2 \\
\frac{dy}{dx}&=x^2\cdot\frac{2}{x}+2x\cdot 2\ln x+2\ln x\cdot\frac{1}{x} \\
&=2x+2x\ln x^2+\frac{2}{x}\ln x \\
&= 2x\left(1+\ln x^2+\frac{1}{x^2}\ln x\right)\\
&=2x\left(1+\ln x^2+\ln x^{\frac{1}{x^2}}\right)\\
&=2x\left(1+\ln x^{2+\frac{1}{x^2}}\right)\\
&=2x\left(\ln e+\ln x^{2+\frac{1}{x^2}}\right)\\
&=2x\left(\ln ex^{2+\frac{1}{x^2}}\right)
\end{aligned}$
Soal Nomor 2
Jika $y=\ln\left(x+\sqrt{x^2+1}\right)$ maka $\frac{dy}{dx}=\frac{1}{\sqrt{x^2+1}}$
$\begin{aligned}
y&=\ln\left(x+\sqrt{x^2+1}\right) \\
\frac{dy}{dx}&=\frac{1}{x+\sqrt{x^2+1}}\frac{d}{dx}\left(x+\sqrt{x^2+1}\right)\\
&=\frac{1}{x+\sqrt{x^2+1}}\left(1+\frac{1}{2}\left(x^2+1\right)^{-\frac{1}{2}}\frac{d}{dx}\cdot x^2\right) \\
&=\frac{1}{x+\sqrt{x^2+1}}\left(1+\frac{1}{2\sqrt{x^2+1}}\cdot 2x\right) \\
&=\frac{1}{x+\sqrt{x^2+1}}\left(1+\frac{x}{\sqrt{x^2+1}}\right) \\
&=\frac{1}{x+\sqrt{x^2+1}}\cdot\frac{x-\sqrt{x^2+1}}{x-\sqrt{x^2+1}}\left(\frac{x+\sqrt{x^2+1}}{\sqrt{x^2+1}}\right) \\
&=\frac{x-\sqrt{x^2+1}}{x^2-x^2-1}\left(\frac{x+\sqrt{x^2+1}}{\sqrt{x^2+1}}\right)\\
&=\frac{x^2-x^2-1}{-\sqrt{x^2+1}}\\
&=\frac{1}{\sqrt{x^2+1}}
\end{aligned}$
Terbukti. $\blacksquare$
Soal Nomor 3
$\displaystyle\int_0^3 \frac{x^4}{2x^5+\pi}\ dx=\frac{1}{10}\ln\frac{486+\pi}{\pi}$
Misal $u=2x^5+\pi$ maka $du=10x^4\ dx$
$\begin{aligned}
\int_0^3 \frac{x^4}{2x^5+\pi}\ dx&=\frac{1}{10}\int\frac{1}{u}\ du \\
&=\frac{1}{10}\ln |u| \\
&=\frac{1}{10}\left[\ln |2x^5+\pi|\right]_0^3 \\
&=\frac{1}{10}\left(\ln(486+\pi)-\ln\pi\right) \\
&=\frac{1}{10}\ln\frac{486+\pi}{\pi}
\end{aligned}$
Soal Nomor 4
$\displaystyle\int_0^3 \frac{x+1}{2x^2+4x+3}\ dx=\frac{1}{4}\ln 11$
Misal $u=2x^2+4x+3$, maka $du=4(x+1)\ dx$. Sehingga
$\begin{aligned}
\int \frac{x+1}{2x^2+4x+3}\ dx&=\frac{1}{4}\int \frac{1}{u}\ du \\
&=\frac{1}{4}\left[\ln u\right]_0^3 \\
&=\frac{1}{4}\left[\ln 2x^2+4x+3\right]_0^3 \\
&=\frac{1}{4}\left[\ln 33-\ln 3\right] \\
&=\frac{1}{4}\ln 11
\end{aligned}$
Terbukti. $\blacksquare$
Soal Nomor 5
Jika $f(x)=\left(\frac{x-1}{x+1}\right)^3$ maka $f^{-1}(x)=\frac{1+\sqrt[3]{x}}{1-\sqrt[3]{x}}$
Langkah 1
$\begin{aligned}
y&=\left(\frac{x-1}{x+1}\right)^3 \\
\sqrt[3]{y}&=\frac{x-1}{x+1} \\
x \sqrt[3]{y}+ \sqrt[3]{y}&=x-1 \\
x-x \sqrt[3]{y}&=1+ \sqrt[3]{y} \\
x&=\frac{1+ \sqrt[3]{y}}{1- \sqrt[3]{y}}
\end{aligned}$
Langkah 2
$f^{-1}y=\frac{1+\sqrt[3]{y}}{1-\sqrt[3]{y}}$
Langkah 3
$f^{-1}x=\frac{1+\sqrt[3]{x}}{1-\sqrt[3]{x}}$
Pengujian :
$\begin{aligned}
f^{-1}(f(x))&=\frac{1+\left[\left(\frac{x-1}{x+1}\right)^3\right]^{1/3}}{1-\left[\left(\frac{x-1}{x+1}\right)^3\right]^{1/3}}\\
&=\frac{1+\frac{x-1}{x+1}}{1-\frac{x-1}{x+1}}\\
&=\frac{x+1+x-1}{x+1-x+1}\\
&=\frac{2x}{2}\\
&=x\\
f\left(f^{-1}(x)\right)&=\left(\frac{\frac{1+\sqrt[3]{x}}{1-\sqrt[3]{x}}-1}{\frac{1+\sqrt[3]{x}}{1-\sqrt[3]{x}}+1}\right)^3\\
&=\left(\frac{1+\sqrt[3]{x}-1+\sqrt[3]{x}}{1+\sqrt[3]{x}+-\sqrt[3]{x}}\right)^3\\
&=\left(\frac{2\sqrt[3]{x}}{2}\right)^3 \\
&=\left(x^{1/3}\right)^3 \\
&=x
\end{aligned}$
Terbukti. $\blacksquare$
Soal Nomor 6
$\displaystyle\int_0^3 xe^{x^2-3}\ dx=\frac{1}{2}\left(e^6-e^{-3}\right)$
Misalkan $u=x^2-3$ maka $du=2x$, sehingga
$\begin{aligned}
\int xe^{x^2-3}\ dx&=\frac{1}{2}\int e^u\ du \\
&=\left[\frac{1}{2}e^u\right]_0^3 \\
&=\left[\frac{1}{2}e^{x^2-3}\right]_0^3 \\
&=\frac{1}{2}\left(e^6-e^{-3}\right)
\end{aligned}$
Terbukti. $\blacksquare$
B. Selesaikan
Soal Nomor 1
$\displaystyle\int_0^1 \frac{e^{2x}-e^{-2x}}{e^{2x}+e^{-2x}}\ dx$
Misal $u=e^{2x}+e^{-2x}$ maka $du=2\left(e^{2x}-e^{-2x}\right)\ dx$, sehingga $\begin{aligned}
\int \frac{e^{2x}-e^{-2x}}{e^{2x}+e^{-2x}}\ dx&=\frac{1}{2}\int\frac{1}{u}\ du \\
&=\frac{1}{2}\left[\ln |u|\right]_0^1 \\
&=\frac{1}{2}\left[\ln \left|e^{2x}+e^{-2x}\right|\right]_0^1 \\
&=\frac{1}{2}\left(\ln \left|e^{2}+e^{-2}\right|-\ln \left|1+1\right|\right) \\
&=\frac{1}{2}\left(\ln \left(e^{2}+e^{-2}\right)-\ln 2\right) \\
\end{aligned}$
Jadi, hasil integralnya adalah $\boxed{\frac{1}{2}\left(\ln \left(e^{2}+e^{-2}\right)-\ln 2\right)}$
Soal Nomor 2
$\displaystyle\int\sin^3x\cos^2x\ dx$
Ubah $\sin^2 x$ menjadi $1-\cos^2 x$ $\begin{aligned}
\int\left(1-\cos^2 x\right)\sin x\cos^2x\ dx&=-\int u^2\left(1-u^2\right)\ du \\
&=-\int u^2-u^4\ du\\
&=\frac{u^5}{5}-\frac{u^3}{3}+C\\
&=\frac{\cos^5 x}{5}-\frac{\cos^3 x}{3}+C\\
\end{aligned}$
$\displaystyle\int\left(1-\cos^2 x\right)\sin x\cos^2x\ dx$
Misal $u=\cos x$ maka $du=-\sin x$, sehingga
Jadi, hasil integralnya adalah $\boxed{\frac{\cos^5 x}{5}-\frac{\cos^3 x}{3}+C}$
Soal Nomor 3
$\displaystyle\int x^2e^x\ dx$
Misal $u=x^2$ maka $du=2xdx$ dan $dv=e^x dx$ maka $v=e^x$ $\begin{aligned}
\int x^2e^x\ dx&=x^2 e^x-\int 2xe^x\ dx\\
\end{aligned}$ $\begin{aligned}
\int x^2e^x\ dx&=x^2 e^x-2\left(xe^x-\int e^x\ dx\right) \\
&=x^2 e^x-2xe^x+2e^x+C
\end{aligned}$
Misal $u=x$ maka $du=dx$ dan $dv=e^x$ maka $v=e^x$
Jadi, hasilnya adalah $\boxed{x^2 e^x-2xe^x+2e^x+C}$
Soal Nomor 4
$\displaystyle\int \frac{2x^2+x-4}{x^3-x^2-2x}\ dx$
Pertama ubah bentuk pecahan tersebut dengan dekomposisi pecahan parsial $\begin{aligned}
\frac{2x^2+x-4}{x^3-x^2-2x}&=\frac{2x^2+x-4}{x(x+1)(x-2)} \\
&=\frac{2}{x}-\frac{1}{x+1}+\frac{1}{x-2}
\end{aligned}$ $\begin{aligned}
\int \frac{2x^2+x-4}{x^3-x^2-2x}\ dx&=\int\frac{2}{x}-\frac{1}{x+1}+\frac{1}{x-2}\ dx \\
&=\int \frac{2}{x}\ dx-\int\frac{1}{x+1}\ dx+\int \frac{1}{x-2}\ dx \\
&=2\ln |x|-\ln |x+1|+\ln |x-2|+C
\end{aligned}$
Sehingga bentuk integralnya menjadi
Jadi, hasilnya adalah $\boxed{2\ln |x|-\ln |x+1|+\ln |x-2|+C}$
Comments
Post a Comment