Soal dan Pembahasan - Ujian Akhir Semester Statistika Matematika - Prodi Pendidikan Matematika FKIP ULM
Quote
Soal Nomor 1
Variabel random berukuran $n$ dari suatu distribusi yang memiliki CDF $F(x)=1-x^{-2}, x\geq 1$. Tentukan limit distribusi dari $n^{\frac1{2}}X_{n:n}$
$\begin{aligned}
F_{\sqrt{n}X_{n:n}}&=P\left(\sqrt{n}X_{n:n}\leq y\right)\\
&=P\left(X_{n:n}\leq \frac{y}{\sqrt{n}}\right)\\
&=F_{X_{n:n}}\left(\frac{y}{\sqrt{n}}\right) \\
&=\left(1-\left(\frac{y}{\sqrt{n}}\right)^{-2}\right)^n
\end{aligned}$ $\lim\limits_{n\to \infty } \left(1-\left(\frac{y}{\sqrt{n}}\right)^{-2}\right)^n
=\infty$ $\begin{aligned}
F_{X_{n:n}}&=P\left(X_{n:n}\leq y\right)\\
&=\left(1-\frac1{y^2}\right)^n
\end{aligned}$ $\lim\limits_{n\to \infty } \left(1-\frac1{y^2}\right)^n
=0$ $\begin{aligned}
F_{n^{-\frac1{2}}X_{n:n}}&=P\left(n^{-\frac1{2}}X_{n:n}\leq y\right)\\
&=P\left(\frac1{\sqrt{n}}X_{n:n}\leq y\right)\\
&=P\left(X_{n:n}\leq \sqrt{n}y\right)\\
&=\left(1-\frac1{ny^2}\right)^n, \text{untuk}\ y>\frac{1}{\sqrt{n}}
\end{aligned}$ $\lim\limits_{n\to \infty } \left(1-\frac1{ny^2}\right)^n
=e^{-y^{-2}}$
Tambahan
Sebagai contoh lain dengan fungsi $F(x)$ yang sama, akan dicari limit distribusi dari $X_{n:n}$ dan $n^{-\frac1{2}}X_{n:n}$.
$\textbf{a.}$ Untuk $X_{n:n}$
$\textbf{b.}$ Untuk $n^{-\frac1{2}}X_{n:n}$
Soal Nomor 2
Misalkan $X_1,\ X_2,\ ...,\ X_{100}$ adalah sampel random yang berdistribusi eksponensial, $x_i\sim EXP(1)$ dan misalkan $Y=X_1+X_2+\cdots +X_{100}$. Tentukan aproximasi/pendekatan untuk $P[Y>120]$.
Dengan melihat tabel distribusi didapatkan nilai $\mu$ dan $\sigma$ dari $EXP(1)$ adalah $\mu=1$ dan $\sigma=1$ dan banyaknya data $n=100$. Kemudian diperlukan tabel-$z$ untuk melihat nilai $z=2$
$\begin{aligned}
P(Y>120)&=1-P(Y\leq 120) \\
&=1-P(z\leq\frac{120-100\cdot n}{\sqrt{100}\cdot n}) \\
&=1-P(z\leq2) \\
&=1-0.9772\\
&=0.0228
\end{aligned}$
Jadi, aproximasi/pendekatan untuk $P[Y>120]$ adalah $\boxed{0.0228}$
Soal Nomor 3
Misal $Y_1$, $Y_2$ dan $Y_3$ menyatakan statistik terurut dari peubah acak berukuran 3 dari distribusi dengan fkp
$f(x) = \begin{cases} 4x; &\frac{1}{\sqrt{2}} <x<1 \\ 0; & \text{untuk}~x~\text{lainnya}\end{cases}$
Misal $Z=\frac{Y_1+Y_2}{2}$ nilai tengah sampel. Tentukan fkp dari $Z$ dan $E(Y_2)$
Dari fkp didapatkan CDF yaitu
$$
F(x) =
\begin{cases}
2x^2, & \frac{1}{\sqrt{2}}<x<1 \\
0, & \text{lainnya} \\
\end{cases}
$$
fkp gabungan dari $Y_1$ dan $Y_2$ adalah
$\begin{aligned}
g_{i,j}(y_i,y_j)&=\frac{n!}{(i-1)!(j-i-1)!(n-j)!}\cdot[F(y_i)]^{i-1}\cdot[F(y_j)-F(y_i)]^{j-i-1}\cdot [1-F(y_j)]^{n-j}\cdot f(y_i)\cdot f(y_j) \\
g_{1,2}(y_1,y_2)&=\frac{3!}{(1-1)!(2-1-1)!(3-2)!}\cdot[F(y_1)]^{1-1}\cdot[F(y_2)-F(y_1)]^{2-1-1}\cdot [1-F(y_2)]^{3-2}\cdot f(y_1)\cdot f(y_2) \\
&=6\left(1-4y_2^2\right)\cdot 4y_1\cdot 4y_2 \\
&=96\left(y_1y_2-4y_2^3\right), \frac{1}{\sqrt{2}}<y<1
\end{aligned}$ \begin{aligned}
y_2&=z_2\\
y_1&=2z_1-z_2
\end{aligned} \begin{aligned}
J&=\begin{vmatrix}
\frac{\partial y_1}{\partial z_1} & \frac{\partial y_1}{\partial z_2} \\
\frac{\partial y_2}{\partial z_1} & \frac{\partial y_2}{\partial z_2}
\end{vmatrix}\\
&=\begin{vmatrix}
2&-1\\
0&1
\end{vmatrix} \\
&=2
\end{aligned} $\begin{aligned}
h(z_1,z_2)&=|J|g_{1,2}(y_1,y_2)\\
&=2\left(96\left((2z_1-z_2)-4z_2^3\right)\right)\\
&=192\left((2z_1-z_2)-4z_2^3\right) \\
&=192\left((2z_1-z_2)-4z_2^3\right);\ \frac{1}{\sqrt{2}}<z_1<z_2<1 \\
&=0;\ \text{lainnya}
\end{aligned}$ \begin{aligned}
h_1(z)&=\int_{z_{1}}^1 192\left((2z_1-z_2)-4z_2^3\right)\ dz_2\\
&= 192\int_{z_{1}}^1\left(2z_1-z_2-4z_2^3\right)\ dz_2\\
&=192\left[2z_1z_2-\frac1{2}z_2^2-z_2^4\right]_{z_1}^1 \\
&=192\left(2z_1-\frac1{2}-1-\left(2z_1^2-\frac1{2}z_1^2-z_1^4\right)\right)\\
&=192\left(z_1^4-\frac3{2}z_1^2+2z_1-\frac3{2}\right);\ \frac1{\sqrt{2}}<z<1 \\
&=0;\ \text{lainnya}
\end{aligned} $$\boxed{
h_1(z) =
\begin{cases}
192\left(z_1^4-\frac3{2}z_1^2+2z_1-\frac3{2}\right), & \frac1{\sqrt{2}}<z<1 \\
0, & \text{lainnya} \\
\end{cases}}
$$ \begin{aligned}
g_k(y_k)&=\frac{n!}{(k-1)!(n-k)!}\left[F(y_k)\right]^{k-1}\left[1-F(y_k)\right]^{n-k}f(y_k)\\
g_2(y_2)&=\frac{3!}{(2-1)!(3-2)!}\left[F(y_2)\right]^{2-1}\left[1-F(y_2)\right]^{3-2}f(y_2)\\
&=6\left(2y_2^2\right)\left(1-2y_2^2\right)\cdot4y_2 \\
&=48y_2^3-96y_2^5
\end{aligned} \begin{aligned}
E(Y_2)&=\int_{1/\sqrt{2}}^1 y_2 g_2(y_2) dy_2 \\
&=\int_{1/\sqrt{2}}^1 y_2\left(48y_2^3-96y_2^5\right) dy_2 \\
&=\int_{1/\sqrt{2}}^1 \left(48y_2^4-96y_2^6\right) dy_2 \\
&=\left[\frac{48}{5}y_2^5-\frac{96}{7}y_2^7\right]_{1/\sqrt{2}}^1 \\
&=-\frac{12}{35}\left(12+\sqrt{2}\right) \\
&\approx -4.5992
\end{aligned}
Soal Nomor 4
Misalkan $Y_1\subset Y_2\subset\cdots \subset Y_5$ merupakan statistika rataan berukuran 5 dari sebaran yang memiliki fkp
$f(x) = \begin{cases} \dfrac{2(x+2)}{3}; &0 <x<1 \\ 0; & \text{untuk}~x~\text{lainnya}\end{cases}$
Tentukan fkp dari range yaitu $R=y_{maks}-y_{min}=y_5-y_1$
Dari fkp didapatkan CDF yaitu $$
F(x) =
\begin{cases}
\frac{2}{3}\left(\frac{x^2}{2}+2x\right), & 0<x<1 \\
0, & x~\text{lainnya} \\
\end{cases}
$$fkp dari gabungan dari $Y_1$ dan $Y_5$ adalah
$\begin{aligned}
g_{1,5}(y_1,y_5)&=\frac{5!}{(5-2)!}f(y_1)\left[F(y_5)-F(y_1)\right]^{5-2}f(y_5)\\
&=80\cdot\frac{2}{3}\left(y_1+2\right)\cdot\left[ \frac{2}{3}\left(\frac{y_5^2}{2}+2y_5\right)- \frac{2}{3}\left(\frac{y_1^2}{2}+2y_1\right)\right]^3\cdot \frac{2}{3}\left(y_5+2\right) \\
&=\frac{2560}{243}(y_1+2)(y_5+2)\left[\frac{y_5^2}{2}-\frac{y_1^2}{2}+2y_5-2y_1\right]^3,\ 0<y_1<y_5<1
\end{aligned}$ $\begin{aligned}
h(r,s)&=|J|g_{1,5}(s,r+s) \\
&=\frac{2560}{243}(s+2)(r+s+2)\left[\frac{(r+s)^2}{2}-\frac{s^2}{2}+2(r+s)-2s\right]^3 \\
&=\frac{2560}{243}(s+2)(r+s+2)\left[\frac{r^2+2rs}{2}+2r\right]^3,\ 0<s<1-r,\ 0<r<1
\end{aligned}$ $\begin{aligned}
h_1(r)&=\int_0^{1-r} \frac{2560}{243}(s+2)(r+s+2)\left[\frac{r^2+2rs}{2}+2r\right]^3 ds \\
&=\frac{5}{48}r^3\left(3r^4-98r^3+351r^2-1320r+1064\right);\ 0<r<1 \\
&=0;\ \text{lainnya}
\end{aligned}$ $$\boxed{
h_1(r) =
\begin{cases}
\frac{5}{48}r^3\left(3r^4-98r^3+351r^2-1320r+1064\right), & 0<r<1 \\
0, & \text{lainnya} \\
\end{cases}}
$$
Comments
Post a Comment